701. The Crystal Structure of Dichlorobisthioureazinc.

By N. R. Kunchur and Mary R. Truter.
An X-ray crystal structure analysis of dichlorobisthioureazinc, $\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CS}\right]_{2} \mathrm{ZnCl}_{2}$, has shown that the complex is molecular, each zinc atom being tetrahedrally co-ordinated to two chlorine and two sulphur atoms. Three-dimensional refinement, with allowance for anisotropic thermal motion, gave the bond lengths $\mathrm{Zn}-\mathrm{Cl}=2.32 \pm 0.01 \AA, \mathrm{Zn}^{-S}=2.35 \pm 0.01$ $\AA, \mathrm{S}^{-} \mathrm{C}=1.78 \pm 0.02 \AA, \mathrm{C}-\mathrm{N}=1.28 \pm 0.03 \AA$. The thiourea group is planar with angles $\mathrm{S}^{-} \mathrm{C}^{-} \mathrm{N} 121 \cdot 2^{\circ} \pm 1 \cdot 6^{\circ}$ and $116 \cdot 1^{\circ} \pm 1 \cdot 6^{\circ}$ and $\mathrm{N}^{-} \mathrm{C}^{-} \mathrm{N}$ $122.6^{\circ} \pm 2.0^{\circ}$. The bond angle $\mathrm{Zn}^{-} \mathrm{S}^{-} \mathrm{C}$ is $108.6^{\circ} \pm 0.7^{\circ}$. The zinc valency angles deviate slightly but significantly from the tetrahedral, the angles being $\mathrm{Cl}^{-} \mathrm{Zn}^{-} \mathrm{Cl} 107 \cdot 3^{\circ}, \mathrm{S}^{-} \mathrm{Zn}^{-} \mathrm{S} 111 \cdot 5^{\circ}, \mathrm{S}^{-} \mathrm{Zn}^{-} \mathrm{Cl} 109 \cdot 0^{\circ}$ and $110 \cdot 6^{\circ}$, all $\pm 0 \cdot 2^{\circ}$.

Most of the known complexes of zinc are tetrahedral, but there are exceptions, e.g., five-covalent dichloroterpyridylzinc. ${ }^{1}$ Dichlorobisthioureazinc, $\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CSl}_{2} \mathrm{ZnCl}_{2}\right.$, could be either a molecular compound or a salt, or, since the thiourea ligands might be linked through either the sulphur or the nitrogen atoms, it could be polynuclear. It is sparingly soluble in hot water and its aqueous solution does not give a precipitate with silver nitrate, so it is likely that the chlorine is covalently linked. Although both sulphur and nitrogen atoms form co-ordinate links with zinc, the majority of ligands containing both atoms are linked through the sulphur; hence the molecule is probably neutral with the zinc tetrahedrally bound to two chlorine and two sulphur atoms. This arrangement has, in fact, been proved by the structure analysis described below.
${ }^{1}$ Corbridge and Cox, J., 1956, 594.

As the crystal structure of thiourea has recently been accurately re-determined ${ }^{2}$ the analysis of the structure of the zinc complex has been carried as far as possible to see if any conclusions could be drawn from changes in the molecular dimensions of thiourea on co-ordination.

Experimental

Crystals of dichlorobisthioureazinc were obtained by Maly's method: ${ }^{3}$ hot saturated aqueous solutions of zinc chloride and thiourea were mixed, and cooled to give acicular crystals of the complex (Found: $\mathrm{Zn}, 22.9$; $\mathrm{Cl}, 24.0 ; \mathrm{N}, 20.4$. Calc. for $\mathrm{ZnS}_{2} \mathrm{Cl}_{2} \mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{4}$: $\mathrm{Zn}, 22 \cdot 6$; $\mathrm{Cl}, 24 \cdot 8 ; \mathrm{N}, 19 \cdot 5 \%$).

Accurate determination of the dimensions of the orthorhombic unit cell by Straumanis's method, $\mathrm{Cu}-K$ radiation being used, gave $a=13 \cdot 065, b=12 \cdot 722, c=5 \cdot 890 \AA$, all $\pm 0.005 \AA$ ($v=978.92 \AA^{3}$). The density calculated for 4 molecules $(M, 288 \cdot 6)$ per unit cell is 1.960 g ./c.c., in satisfactory agreement with the value $1.965 \mathrm{~g} . / \mathrm{c} . \mathrm{c}$. obtained by flotation.

Reflections from the classes of planes $(0 k l)$ with $k+l=2 n+1$ and ($h k 0$) with $h=2 n+1$ were absent systematically. This is consistent with the space groups Pnma-D $D_{2 h}^{16}$ and $P_{n 2}{ }_{1} a-C_{2 v}^{9}$. A piezoelectric test gave a negative result, and a centric distribution ${ }^{4}$ was found for the intensities of the ($h k 0$) planes, so that the space group was taken to be the centrosymmetrical Pnma.

For intensity measurements very small crystals (0.03 mm . in diameter) were photographed with $\mathrm{Cu}-K$ radiation, and no absorption correction was made (linear absorption coefficient, $127 \mathrm{~cm} .^{-1}$). Equi-inclination Weissenberg photographs were taken about the principal axes for as many layers as possible, viz. up to ($h k 3$), ($7 k l$), and ($h 7 l$). Of the possible 739 reflections, 567 were observed. Intensities were estimated visually by comparison with a calibration slip, corrected for Lorentz and polarisation factors with the aid of a Cochran chart, and were correlated, and the resulting F^{2} scaled by comparison with the absolute values of F^{2} ($h k 0$) determined by Wilson's method. ${ }^{5}$ The square roots were extracted to give $\left|\mathrm{F}_{\text {obs }}\right|$ and during the isotropic refinement a more accurate scale factor was obtained by making $\sum\left|F_{\text {obs }}\right|=\sum\left|F_{\text {calc }}\right|$, allowing for multiplicity, and during anisotropic refinement the scale factor was one of the parameters.
[Nardelli, Cavalca, and Braibanti ${ }^{6}$ determined the unit-cell dimensions and space group, obtaining unit-cell dimensions not significantly different from ours, but a different space group because on their photographs there is a very weak reflection corresponding to ($0,11,0$) which violates the absences required for the n-glide but probably actually arises from double reflection by the pairs of planes ($\overline{240), ~(270) ~ a n d ~(240), ~(270) .] ~}$

Three-dimensional Structure Analysis.-An approximate structure was obtained by twodimensional methods, the projections along [001] and [010] being solved by Patterson and Fourier syntheses and refined until R was less than $0 \cdot 22$, where $R=\sum\left|\left(\left|\mathrm{F}_{\text {obs }}\right|=\left|\mathrm{F}_{\text {calc }}\right|\right)\right| / \sum\left|\mathrm{F}_{\text {obs }}\right|$. The zinc and chlorine atoms lie in mirror planes at $y=1 / 4$ and $3 / 4 ;$.the thiourea molecules are in general positions, related in pairs by the mirror planes. The structure is shown in the Figure; each zinc atom is surrounded approximately tetrahedrally by two chlorine and two sulphur atoms.

Three-dimensional refinement of co-ordinates was by differential syntheses with a backshift correction for finite series errors. Temperature factors were refined by changing the value of B in the exponential $-\left(B \sin ^{2} \theta / \lambda^{2}\right)$ for each atom to make equal the curvatures of the electron-density distributions, $\partial^{2} \rho / \partial x_{i}{ }^{2}$, derived from the observed and calculated structure factors.

The first set of three-dimensional structure factors was calculated from the co-ordinates given by the two-dimensional analysis with scattering factors for carbon and nitrogen (McWeeny ${ }^{8}$), chlorine and zinc (Berghuis et al. ${ }^{9}$) and sulphur (International Tables ${ }^{10}$) all
${ }^{2}$ Kunchur and Truter, J., 1958, 2551.
${ }^{3}$ Maly, Ber., 1876, 9, 172.
${ }^{4}$ Howells, Phillips, and Rogers, Research, 1949, 2, 338.
${ }^{5}$ Wilson, Acta Cryst., 1949, 2, 318.
${ }^{6}$ Nardelli, Cavalca, and Braibanti, Gazzetta, 1956, 86, 1037.
${ }^{7}$ Nardelli and Cavalca, personal communication.
${ }^{8}$ McWeeny, Acta Cryst., 1951, 4, 513.
${ }^{9}$ Berghuis, Ijbertha, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, ibid., 1955, 8, 478.
${ }^{10}$ " International Tables for the Determination of Crystal Structures," Borntraeger, Berlin, 1935.
with $B=1.95 \AA^{2}$; these gave $R=0.30$. It was found that the temperature factor was correct for zinc but low for all the other atoms. Five cycles of refinement were required to reduce R to 0.182 and the last differential synthesis gave no shifts as large as the standard deviations so that isotropic refinement was complete. However, examination of the ratios between the observed curvatures and those calculated on the assumption of isotropic thermal motion shows that even for the heavy atoms the motions are markedly anisotropic. In Table I are shown the values of B used for the last isotropic calculation of structure factors, the observed peak electron density, ρ, the ratio between this and the calculated value, and $r\left(x_{i}\right)=$ $\left(\partial^{2} \rho_{0} / \partial x_{i}^{2}\right) /\left(\partial^{2} \rho_{c} / \partial x_{i}{ }^{2}\right)$.

Table 1.

The ratios correspond to values of $\left|\mathrm{F}_{\text {obs }}\right|$ scaled to make $\sum\left|\mathrm{F}_{\text {obs }}\right|=\sum\left|\mathrm{F}_{\text {calc }}\right|$.
An interesting feature is the effect of anomalous dispersion on the temperature factor for zinc. From the atomic masses the ratio $B_{\mathrm{Zn}}: B_{\mathrm{Cl}}$ should be about $0.49: 1.0$ while that found is $0.84: 1.0$. Structure factors for the axial reflections were calculated with the correction for anomalous dispersion given by Dauben and Templeton ${ }^{11}$; a plot of \log ($\left[\mathrm{F}_{\text {corr }}\right] /\left[\mathrm{F}_{\text {uncorr }}\right]$) against $\sin ^{2} \theta$ was linear and from the slope the value of the artificial temperature factor which allowed for anomalous dispersion was found to be $B=0.65 \AA^{2}$. The value $B=2 \cdot 10 \AA^{2}$ empirically determined for zinc already includes this correction, $B=0.65 \AA^{2}$, so that the contribution due to the thermal vibration of zinc is $B^{\prime}=1.45 \AA^{2}$. The $B^{\prime}{ }_{\mathrm{Zn}}: B_{\mathrm{Cl}}$ ratio is $0.58: 1.0$, in better agreement with expectation.

Anisotropic Refinement.-Cruickshank's method 12 for the successive refinement of anisotropic thermal parameters was used. The equations, which he gives, lead to the correct coefficients $b_{i j}$ for each atom in the expression for the temperature factor $\exp -\left(b_{11} h^{2}+\right.$ $\left.b_{12} h k+b_{13} h l+b_{22} k^{2}+b_{23} k l+b_{33} l^{2}\right)$. Co-ordinates were refined by differential synthesis as before. The scale factor was refined to make the peak electron densities derived from the observed and calculated structure factors equal; this at first was different from the factor required to make $\sum\left|F_{\text {obs }}\right|=\sum\left|F_{\text {calc }}\right|$ allowing for multiplicity, but when refinement was complete the two factors were the same. The first set of structure factors calculated with allowance for anisotropy gave $R=0 \cdot 153$; co-ordinate, and temperature factor shifts were applied to give new parameters (all $\times 10^{5}$), shown below, for which $R=0 \cdot 148$.

	x / a	y / b	z / c	b_{11}	b_{12}	b_{13}	b_{22}	b_{23}	b_{33}
Zn	$0 \cdot 16666$	$0 \cdot 25000$	0.31558	390	0	94	242	0	1598
S	0.09567	$0 \cdot 09791$	$0 \cdot 15584$	555	$\overline{2} \overline{6} \overline{2}$	$5 \overline{8} \overline{7}$	269	134	1619
Cl^{1}	$0 \cdot 34102$	$0 \cdot 25000$	$0 \cdot 25161$	322	0	17	515	0	1588
Cl^{2}	$0 \cdot 14580$	$0 \cdot 25000$	$\overline{0} \cdot \underline{2} 9 \overline{4} \overline{2} \overline{8}$	776	0	812	245	0	1875
C	$0 \cdot 11794$	0.00811	$0 \cdot 34335$	365	67	$\overline{3} \overline{2} \overline{0}$	390	$\overline{3} \overline{3} \overline{3}$	1210
N^{1}	$0 \cdot 14287$	0.00597	$\overline{0} \cdot \overline{4} \overline{4} \overline{5} \overline{7} \overline{1}$	757	$\overline{3} \overline{0} \overline{0}$	$\mathbf{2 7} \overline{5}$	555	$\overline{9} \mathbf{4} \mathbf{2}$	2612
N^{2}	$0 \cdot 10494$	$\overline{0} \cdot \overline{0} \overline{9} \overline{8} \overline{7} \overline{1}$	0.26297	769	$\overline{1} \mathbf{0} \overline{5}$	$\overline{1} \mathbf{0} \overline{4} \overline{6}$	324	573	3313

(This table gives the parameters actually used although not all the figures are significant.) A list of structure factors calculated from these parameters is given in Table 2 together with the observed structure factors.

Differential syntheses based on the structure factors in Table 2 indicated a maximum shift of $0.017 \AA$ in y_{C} and a corresponding standard deviation of $0.023 \AA$ so that anisotropic refinement of co-ordinates was complete. The mean electron density ratio was 1.005 , the mean curvature ratio 0.995 , and the average deviation of the ratios from unity 1%; comparison with the values

[^0]in Table 1 shows the improvement effected by anisotropic refinement. From the small differences between the observed and calculated curvatures the final changes in the thermal parameters were calculated, the largest (in b_{13} for Cl^{2}) being 1.2 times the corresponding standard deviation calculated from Cruickshank's formula. ${ }^{12}$ Application of the shifts to the co-ordinates and temperature factors gave the final parameters which are shown in Table 3; the thermal parameters are quoted as the mean square amplitudes of vibration, U, where $U_{i i}=a_{i}{ }^{2} b_{i i} / 2 \pi^{2}$ and $U_{i j}=a_{i} a_{j} \mathrm{~b}_{i j} / 4 \pi^{2}(i \neq j)$, the a 's being unit-cell dimensions. Table 3 also shows the peak electron densities for the atoms; the standard deviation, $\sigma(\rho)$, was $0.5 \mathrm{e} / \AA^{3}$. In Table 3 the estimated standard deviations ${ }^{13}$ in the co-ordinates, $\sigma\left(x_{i}\right)$, are given; for the thermal parameters, the values of $\sigma\left(U_{i j}\right)$ derived from $\sigma\left(b_{i j}\right)$ were found to be approximately the same for all i and j for each atom so that only a mean $\sigma(U)$ is quoted.

Correction for Rotational Oscillation.-It has been shown ${ }^{14}$ that rotational oscillations can cause appreciable errors in apparent atomic positions, and for some molecules which can be assumed to be rigid the thermal motions can be analysed ${ }^{15}$ to give the translational and

Table 2. Observed and calculated structure factors.
Reflections which are too weak to be observed have been omitted.

$h k l$	$\underset{\text { (calc.) }}{F}$	$\underset{\text { (obs.) }}{\mathrm{F}}$	$h k l$	$\underset{\text { (calc.) }}{\mathrm{F}}$	$\underset{\text { (obs.) }}{\mathrm{F}}$	$h k l$	$\underset{\text { (calc.) }}{\mathrm{F}}$	$\underset{\text { (obs.) }}{\mathrm{F}}$	$h k l$	$\underset{\text { (calc.) }}{\mathrm{F}}$	$\underset{\text { (obs.) }}{\mathrm{F}}$	$h k l$	$\underset{\text { (calc.) }}{\mathrm{F}}$	$\underset{\text { (obs.) }}{\mathrm{F}}$	hkl	$\underset{\text { (calc.) }}{\mathrm{F}}$	$\underset{\text { (obs.) }}{\mathrm{F}}$
000	(576)	(10,0,0	-18	21	571	29	31	292	24	24	103	9	12	13,2,3	-19	17
020	-92	76	10,1,0	32	29	591	-24	31	2,10,2	-39	44	113	-58	53	13,3,3	31	28
040	168	138	10,2,0	69	61	5,11,1	13	19	2,11,2	-31	27	123	-57	47			
060	-198	169	10,4,0	-87	63	5,12,1	-11	17	2,12,2	18	16	133	116	79	024	-49	52
080	173	154	10,7,0	-30	23	5,13,1	-17	23	2,13,2	23	24	143	86	65	044	42	36
0,12,0	114	99	10,8,0	-37	32				2,14,2	-13	9	153	-60	38			
0,14,0	-77	64	10,10,0	59	42	701	-54	46	2,15,2	-21	13	173	39	35	204	-24	19
0,16,0	24	21	10,12,0	-17	10	711	40	47				183	29	28	214	43	56
						741	-26	31	402	110	91	193	-61	64	234	$\stackrel{2}{2}$	23
200	-53	51	12,0,0	57	54	751	23	31	412	-28	26	1,10,3	-53	60	254	12	17
210	-129	108	12,1,0	-7	16	761	10	10	422	-73	71	1,11,3	53	60	274	-48	42
220	101	94	12,2,0	-54	41	771	-36	38	432	40	49						
230	46	34	12,3,0	-12	16	781	-28	34	442	36	35	303	-75	71	424	35	41
240	-116	125	12,4,0	26	27	7,12,1	-15	7	452	-30	31	313	27	28	434	37	31
250	-82	94	12,6,0	-57	48	7,13,1	23	26	462	-87	89	323	87	72	444	-26	29
260	34	33	12,7,0	12	14				472	20	16	333	70	76	454	-12	12
270	102	87	12,8,0	36	39	901	33	36	482	51	63	343	-87	88			
280	-46	49	12,10,0	-23	26	911	16	24	492	-26	27	363	57	38	604	49	40
290	-32	27				921	-19	22	4,10,2	-22	27	373	-31	21	614	-14	21
2,10,0	59	54	14,0,0	-17	23	931	13	18	4,11,2	24	27	383	-59	62	634	-17	23
2,11,0	36	27	14,8,0	-2	5	961	-32	37	4,12,2	37	41	393	-29	36			
2,12,0	-27	23				971	-16	13	4,13,2	-12	31	3,10,3	53	56	804	-6	16
2,13,0	-60	50	16,0,0	-30	17	981	14	13	4,14,2	-32	28	3,11,3	25	23	834	-39	29
2,16,0	-27	19	16,2,0	20	16	9,12,1	15	19				3,12,3	-36	38	854	10	12
						9,13,1	12	10	602	-52	42	3,13,3	25	26			
400 410	-288	223	101	-32	36				622	112	104	3,14,3	28	26	10,04	-37	30
410 420	45	$\begin{array}{r}38 \\ \hline 24\end{array}$	111	$\begin{array}{r}31 \\ -74 \\ \hline\end{array}$	85	11,0,1	17 -18	14	642	-98	97						
420 430	25 -97	24 86	131	-74	83 91	11,1,1	-18	17	662	59	67	503	60	60	115	-27 46	21
440	-88	79	151	38	47	11,3,1	7	7	682 6,102	-50 71	64 73	513	74 -20	73 26	125	30	37
450	61	59	161	-25	28	11,4,1	-7	10	6,12,2	-32	36	533	-60	65	135	-50	48
460	106	91	181	-26	28	11,5,1	-16	14	$6,14,2$	- 24	22	543	-22	26	145	-32	29
470	-21	23	191	40	34	11,6,1	-1	1	6,4,2	24		553	-53	47	155	44	33
480	-100	100	1,10,1	26	20	11,7,1	15	15	802	11	8	563	-60	47	175	-33	25
490	59	59	1,11,1	-25	21	11,10,1	15	21	812	17	13	573	-64	65	195	37	36
4,11,0	-45	45	1,12,1	-11	13	11,11,1	8	7	822	-15	23	583	17	16			
4,12,0	-71	39	1,13,1	6	8				832	-15	31	593	38	18	305	54	49
4,14,0	43	42	1,15,1	-15	15	13,2,1	7	10	842	-15	18				325	-49	51
			1,16,1	-18	17	13,3,1	-20	21	852	18	19				335	-17	26
600	73	69				13,4,1	-5	7	862	-8	9	713	57 -64	${ }_{64} 6$	345	47	46
610	18	22	301	85	89	13,9,1	10	13	8,13,2	-8	16	713 723	-64	63 38	365	-44	40
620	-150	128	311	-23	32				8,13,2	8	16	743	-32 -20	28			
640	181	171	321	-12	15	002	-205	179				753	-43	42		-15	23
650 660	16 -51	17 52	331 341	-50	60 107	022	140 -72	124	$10,0,2$ $10,1,2$	20 -16	21	753 763	-43 -43	46	515	149 -35	52 35
670	-18	21	371	27	24	062	150	124	10,2,2	-56	50	773	55	46	555	-40	33
680	78	68	381	47	42	082	-90	85	10,4,2	47	46	783	35	26	575	39	33
6,10,0	-106	85	391	22	21	0,10,2	44	53	10,6,2	-28	35				595	-30	28
6,12,0	45	43	3,10,1	-20	21	0,12,2	-61	50	10,7,2	14		903	-49	49			
6,14,0	-23	16	3,11,1	-12	10	0,14,2	55	46	10,8,2	25	29	913	-27	29	705	-33	28
			3,12,1	23	25				10,10,2	-40	44	923	41	45	715	27	26
810	-23	17	3,13,1	-16	23	202	33	29				9 Pa	-14	16	725	23	19
820	52	47				212	43	45	12,0,2	-41	40	963	56	51	735	-21	17
830	74	63	501	-34	36	222	-69	62	12,2,2	36	29						
850	-39	30	511	-43	54	232	-51	51	12,4,2	-25	25	11,1,3	32	32	905	22	22
860	23	30	521	18	17	242	59	58	12,6,2	37	39	11,2,3	-15	25	925	-26	26
890	-49	39	531	31	36	252	36	38	12,8,2	-26	30	11,3,3	-19	23			
8,10,0	27	22	541	26	27	262	-35	43	12,10,2	18	16	11,4,3	23	25	11,3,5	23	17
8,11,0	34	22	551	-32	34	272	-45	45				11,5,3	30	26			
8,13,0	-6	12	561	45	34	282	29	27	16,0,2	20	16	11,7,3	-25	31	006	39	45

[^1]Table 3. (Continued.)

$h k l$	$\begin{gathered} \mathrm{F} \\ \text { (calc.) } \end{gathered}$	$\underset{\text { (obs.) }}{\mathrm{F}}$	$h k l$	$\begin{gathered} \mathrm{F} \\ \text { (calc.) } \end{gathered}$	$\begin{gathered} F \\ \text { (obs.) } \end{gathered}$	$h k l$	$\underset{\text { (calc.) }}{\mathrm{F}}$	$\underset{\text { (obs.) }}{\mathbf{F}}$	$h k l$	$\begin{gathered} \mathrm{F} \\ \text { (calc.) } \end{gathered}$	$\underset{\text { (obs.) }}{\mathrm{F}}$	$h k l$	$\begin{gathered} \mathbf{F} \\ \text { (calc.) } \end{gathered}$	$\underset{\text { (obs.) }}{\mathbf{F}}$	$h k l$	$\begin{gathered} \mathrm{F} \\ \text { (calc.) } \end{gathered}$	$\underset{\text { (obs.) }}{\mathbf{F}}$
216	-53	63	401	-57	59	10,6,1	-30	24	392	-31	37	033	-63	48	344	-25	24
256	-33	38	411	45	54	10,8,1	21	20	3,10,2	-26	34	053	30	17	354	27	22
276	51	41	421	-42	48	10,9,1	27	34	3,11,2	23	28				364	-37	38
			431	-18	19	10,10,1	-16	20	3,12,2	-14	16	213	-23	19			
406	-22	26	441	52	54				3,14,2	21	24	223	46	43	504	46	43
416	18	17	451	28	34	12,0,1	-48	40	3,15,2	17	13	233	11	14	514	-46	48
436	-45	41	461	13	21	12,1,1	-54	41				243	-20	24	544	30	29
456	26	30	471	-43	41	12,3,1	30	32	502	-32	25	253	-15	21	554	-26	12
			4,10,1	-44	31	12,5,1	-40	36	512	68	68	263	31	27	574	45	39
626	-13	14	4,11,1	-14	17	12,6,1	29	27	522	34	45						
			4,13,1	18	20	12,7,1	45	34	532	29	36	403	12	14	704	-47	45
836	42	28				12,8,1	-18	17	542	-20	29	423	-23	28	714	-15	21
			601	18	22	12,9,1	-28	28	552	36	40	433	36	38	724	34	32
10,0,6	17	16	611	-64	63	12,10,1	-5	7	562	29	31	453	-14	19	734	-12	11
			621	54	57	12,11,1	15	14	572	-59	59	463	-18	19	764	47	41
107	32	18	631	105	110				582	-23	33						
117	-19	19	641	-44	36	14,0,1	-12	10				613	40	42	904	-14	16
			651	-69	56	14,1,1	16	10	702	67	51	623	-22	27	914	35	37
307	-18	16	671	30	28	14,3,1	-10	10	712	22	22	633	-17	26	924	-23	29
			691	-60	34	14,4,1	11	7	722	-37	43	653	26	31			
527	-4	12	6,10,1	40	24	14,5,1	15	7	762	-68	69	663	-19	24	11,0,4	17	16
			6,11, 1	45	34	14,6,1	16	7	772	-26	29	673	-32	31	11,2,4	-20	29
011	-125	106 69	$6,13,1$	-13 19	16	14,7,1	-15	7	782	24	32				11,3,4	35	32
031	62 -75	69 76	6,15,1	19	17				7,12,2	25 -27	23	813	-19	22			
051	-75	76 89				16,0,1	19	10	7,14,2	-27	21	823	28	32	035	40	40
071	96	89	801	60	64	16.1.1	22	21				843	-12	17			
091	-25	30	811	46	51				902	13	17	863	24	20	205	87	77
0,11,1	30	24	821	46	33	102	0	13	912	-47	38	873	20	17	235	17	18
0,13,1	-42	36	831	-34	34	112	-23	28	922	14	9				245	36	29
0,15,1	19	19	841	-31	34	122	-51	48	942	-29	38	10,1,3	-22	24	265	-39	28
			851	34	36	132	-80	70	952	-36	36	10,7,3	19	20			
201	-115	96	861	-29	38	142	64	64	962	-10	9				405	-17	18
211	46	48	871	-32	38	172	24	29	972	38	46	12,1,3	20	25	415	-16	17
221	-72	96	881	11	13	182	21	34	9,10,2	21	24	12,2,3	-18	17	425	37	37
231	-67	89	891	31	40	192	33	38				12,3,3	-18	24	435	-34	31
241	72	96	8,10,1	34	39	1,10,2	-42	44	11,0,2	-21	29				445	-49	45
251	45	48	8,11,1	-13	10	1,11,2	-26	28	11,2,2	25	22	104	-33	30			
261	54	49	$8,12,1$	11	13	1,13,2	-22	26	11,3,2	-42	38	114	6	10	605	-27	26
271	-22	22	$8,13,1$	20	21	1,15,2	-12	10	11,5,2	17	21	124	20	21	625	-14	10
281	-18	19	$8,14,1$	-10	10				11,6,2	33	38	134	44	50	635	-30	25
291	35	31				302	-62	64	11,9,2	26	28	144	-58	58			
2,10,1	-51	40	10,0,1	27	21	812	-32	24	11,11,2	-19	16	154	-10	17	825	-36	29
2,11,1	-27	24	10,1,1	16	14	332	58	52							835	13	17
2,12,1	-20	23	10,2,1	-32	36	342	43	55	13,2,2	-25	24	304	26	32	845	44	42
2,13,1	9	13	10,3,1	-43	34	352	-30	31	13,4,2	32	34	314	31	27			
2,14,1	18	19	10,4,1	13	14	362	53	60				324	-12	16	10,2,5	25	25
2,15,1	-11	15	10,5,1	21	24	372	24	28	013	18	19	334	-56	31			
2,16,1	18	17															

Table 3. Final parameters and estimated standard deviations.

	x / z	y / b	z / c	$\begin{gathered} X \\ (\AA) \end{gathered}$	$\begin{gathered} Y \\ (\AA) \end{gathered}$	$\begin{gathered} Z \\ (\AA) \end{gathered}$	$\begin{gathered} \sigma(x) \\ \left(10^{3} \AA\right) \end{gathered}$	$\begin{gathered} \sigma(y) \\ \left(10^{3} \AA\right) \end{gathered}$	$\begin{gathered} \sigma(z) \\ \left(10^{3} \AA\right) \end{gathered}$
Zn	$0 \cdot 1668$	$0 \cdot 2500$	$0 \cdot 3154$	$2 \cdot 179$	$3 \cdot 181$	1.858	2		2
S	$0 \cdot 0959$	$0 \cdot 0978$	$0 \cdot 1560$	1.253	$1 \cdot 244$	0.919	5	5	5
Cl^{1}	$0 \cdot 3409$	$0 \cdot 2500$	$0 \cdot 2519$	$4 \cdot 454$	3•181	$1 \cdot 484$	4	-	4
Cl_{2}	$0 \cdot 1458$	$0 \cdot 2500$	-0.2946	1.905	$3 \cdot 181$	$4 \cdot 155$	6	-	4
C	$0 \cdot 1177$	-0.0095	$0 \cdot 3447$	1.537	-0.120	2.030	15	23	19
N^{1}	$0 \cdot 1431$	0.0062	$0 \cdot 5551$	1.870	0.079	$3 \cdot 269$	20	18	17
N^{2}	$0 \cdot 1043$	-0.0995	$0 \cdot 2638$	$1 \cdot 363$	-1.265	$1 \cdot 554$	20	15	22
	$\stackrel{U_{11}}{\left(10^{3} \AA^{2}\right)}$	$\begin{gathered} U_{12} \\ \left(10^{3} \AA^{2}\right) \end{gathered}$	$\begin{gathered} U_{13} \\ \left(10^{3} \AA^{2}\right) \end{gathered}$	$\begin{gathered} U_{22} \\ \left(10^{3} \AA^{2}\right) \end{gathered}$	$\begin{gathered} U_{28} \\ \left(10^{3} \AA^{2}\right) \end{gathered}$	${ }_{\left(10^{3} \AA^{23}\right)}^{U^{2}}$			$\stackrel{\rho}{\left(\mathrm{e} / \AA^{\mathrm{s}}\right)}$
Zn	34	0	3	20	-	28		2	$65 \cdot 6$
S	49	-26	-26	21	5	28		4	$30 \cdot 6$
Cl^{1}	27	0	0	43	0	28		4	$32 \cdot 2$
Cl^{2}	73	0	26	17	0	33		4	$30 \cdot 0$
C	33	3	-11	31	-7	22			$8 \cdot 9$
N^{1}	66	-33	-23	43	-36	47			$8 \cdot 9$
N^{2}	67	-15	-40	24	23	63			$8 \cdot 3$

rotational vibrations. A rigorous analysis for this complex is not possible because it is unlikely to be rigid and the standard deviations in the mean square amplitudes of oscillation are very large for the light atoms; it is, however, of interest to find an approximate value for the maximum correction for rotational oscillation. The procedure used was the same as that described for the ethyl sulphate anion ${ }^{16}$ so that only the outline is given here. Cruickshank ${ }^{17}$
${ }_{17} 16$ Truter, Acta Cryst., 1958, in the press.
${ }_{17}$ Cruickshank, ibid., 1956, 9, 757.
has shown that the approximate correction, M, to the length $O P$ from the mass centre O to an atom P is $M=\left(U_{a}+U_{b}\right) / 2 O P$ where U_{a} and U_{b} are the mean square amplitudes of oscillation about two axes through O orthogonal to $O P$. The zinc atom is only $0.2 \AA$ from the mass centre of the molecule so that the motion of this atom may be taken as approximately the translational motion of the molecule as a whole. Subtraction of the thermal parameters for zinc (allowing for an apparent mean square amplitude of $8 \times 10^{-3} \AA^{2}$ due to anomalous dispersion) gave mean square amplitudes, $U-U_{\mathrm{Zn}}$, for the other atoms, which for the purpose of finding the maximum correction were taken as entirely due to rotational oscillation. The maximum, minimum, and intermediate values of the " oscillation" mean square amplitudes and their directions were calculated for each atom; the magnitudes are:

	S	Cl^{1}	Cl^{2}	C	N^{1}	N^{2}
$U_{\text {max }}\left(10^{3} \AA^{2}\right)$	37	32	65	20	53	67
$U_{\operatorname{mma}}^{\max }\left(10^{3} \AA^{2}\right)$	0	1	5	5	0	8
$U_{\text {triter }}\left(10^{3} \AA^{2}\right)$	4	8	9	11	45	21

U_{a} was taken to be $U_{\text {max. }}$. For those atoms, Cl and S , for which $U_{\text {max. }}$ was approximately perpendicular to $O P, U_{b}$ was taken to be the value of U in the third orthogonal direction, and a reliable correction was obtained. For the light atoms U_{b} was taken to be $U_{\text {inter.; }}$ this procedure may overestimate M and probably underestimates the correction to the $\mathrm{C}-\mathrm{N}$ bond length because it is likely that the nitrogen atoms rotate about the $\mathrm{C}^{-} \mathrm{S}$ bond axis, as in thiourea itself, as well as about the mass centre of the molecule. Corrected co-ordinates were obtained by increasing the distance of each atom from the mass centre by M along $O P$.

Interatomic Distances and Angles.-The bond lengths, with and without corrections for rotational oscillation, and their estimated standard deviations (e.s.d.) are shown in Table 4; as can be seen from the values of $\sigma(U)$ in Table 3, even if the procedure were rigorous some uncertainty in the corrections would be introduced by the inaccuracies in the thermal parameters so that for the final values the limits of error have been increased to allow for these deficiencies. Only one set of bond angles is given because they were not altered by the corrections. Some of the intramolecular non-bonded distances are also given in Table 4. In the Figure the intramolecular separations between nearest neighbours are shown. The thiourea group is planar to within $\pm 0.01 \AA$ as in thiourea. ${ }^{2}$

Table 4. Interatomic distances and angles.

Bond lengths	$\underset{\AA}{\text { uncorr. }}$	$\stackrel{\text { corr. }}{\AA}$	e.s.d.	$\underset{\AA}{\text { final }}$	Bond angles		e.s.d.	$\begin{aligned} & \text { Distance } \\ & \AA \end{aligned}$	
Zn -S	$2 \cdot 343$	$2 \cdot 352$	0.005	2.35 ± 0.01	$\mathrm{S}-\mathrm{Zn}-\mathrm{S}^{\prime}$	$111.5{ }^{\circ}$	$0 \cdot 2$	S... N^{1}	$2 \cdot 69$
$\mathrm{Zn}-\mathrm{Cl}^{1}$	$2 \cdot 305$	$2 \cdot 314$	0.005	$2.31\}_{2.32}+0.01$	$\mathrm{S}-\mathrm{Zn}-\mathrm{Cl}^{1}$	$109 \cdot 0$	$0 \cdot 2$	S... N^{2}	$2 \cdot 59$
$\mathrm{Zn}-\mathrm{Cl}^{2}$	$2 \cdot 313$	$2 \cdot 328$	$0 \cdot 005$	$2.32\} 2.32 \pm 0.01$	$\mathrm{S}-\mathrm{Zn}-\mathrm{Cl}^{2}$	$110 \cdot 6$	$0 \cdot 2$	$\mathrm{N}^{1} . . \mathrm{N}^{2}$	$2 \cdot 24$
S-C	$1 \cdot 78$	$1 \cdot 78$	0.022	1.78 ± 0.02	$\mathrm{Cl}^{1}-\mathrm{Zn}-\mathrm{Cl}^{2}$	107.3	$0 \cdot 2$	S...S'	3.87
$\mathrm{C}-\mathrm{N}^{1}$	$1 \cdot 30$	$1 \cdot 30$	0.027	$1.30\} 1.28$	$\mathrm{Zn}-\mathrm{S}-\mathrm{C}$	108.6	$0 \cdot 7$	$\mathrm{Cl}^{1} . \mathrm{Cl}^{2}$	$3 \cdot 69$
$\mathrm{C}-\mathrm{N}^{2}$	$1 \cdot 25$	1.26	0.028	$1.26{ }^{1.28} \pm 0.03$	$\mathrm{S}-\mathrm{C}-\mathrm{N}^{1}$	121.2	1.5	Zn..C	$3 \cdot 36$
					$\mathrm{S}-\mathrm{C}-\mathrm{N}^{2}$	$116 \cdot 1$	1.5	$\mathrm{N}^{1} . \mathrm{Cl}^{2}$	$3 \cdot 23$
					$\mathrm{N}^{2}-\mathrm{C}-\mathrm{N}^{2}$	$122 \cdot 6$	1.9		

It is noteworthy that even for bonds between heavy atoms the systematic error due to rotational oscillations may be twice the estimated standard deviation calculated to allow for random errors.

Discussion

The structure as a whole is shown in the Figure. The packing is very efficient and there are many separations of about $3.5-4.0 \AA$ but no unreasonably short ones and none that can be attributed to hydrogen bonding.

The significant departure of the bond angles around the zinc atom from those of a regular tetrahedron may indicate that the bonds are not formed from simple $s p^{3}$ hybrid orbitals but include some contribution from the d orbitals, or it may give rise to more efficient packing of the molecules in the solid. The $\mathrm{Zn}^{-\mathrm{S}}$ bond is not significantly longer than that in zinc blende but the $\mathrm{Zn}-\mathrm{Cl}$ bond, which is the same as that $(2 \cdot 29 \pm 0.02 \AA)$ found in dichloroterpyridylzinc, ${ }^{1}$ is significantly shorter than the sum of the ionic radii
$(2 \cdot 66 \AA)$ as given by the separation in zinc chloride. Probably all the bonds to the zinc atom are partly ionic and partly covalent.

The $\mathrm{S}^{-} \mathrm{C}$ bond does not differ significantly from the value generally accepted for a single bond, $1.82 \AA$. A large variation in the bond angles for sulphur bonded to two other atoms has been observed ${ }^{18}$ ranging from $65 \cdot 8^{\circ}$ to $119 \cdot 0^{\circ}$; the angle found in the complex, 108.6° is approximately tetrahedral.

Comparison with unco-ordinated thiourea ${ }^{2}$ shows that the molecule has retained its planarity, i.e., that the carbon atom is in a state of $s p^{2}$ hybridisation. The C-S bond is lengthened and the $\mathrm{C}-\mathrm{N}$ bonds are shortened. The change in the $\mathrm{C}^{-} \mathrm{S}$ bond is just significant; the bond in thiourea is $1.71 \pm 0.01 \AA$, so that the probability that the increase of $0.07 \AA$ has occurred as a result of random errors of observation is 1 in 100 . The very large standard deviations in the $\mathrm{C}-\mathrm{N}$ bond lengths mean that the difference between

Projection along [001]. The heights of the molecules along the c axis are shown as fractional co-ordinates in parentheses. The numbers are distances in \AA between nitrogen atoms and their nearest neighbours as indicated by the dotted lines.
$1.28 \pm 0.03 \AA$ in the complex and $1.33 \pm 0.01 \AA$ in the molecule is not statistically significant. Qualitatively the changes appear reasonable; in thiourea three forms, two zwitterionic $\left[\mathrm{NH}_{2} \cdot \mathrm{NH}_{2}^{+} \cdot \mathrm{C} \cdot \mathrm{S}^{-}\right]$and one uncharged $\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{C}: \mathrm{S}\right]$, contribute to the bonding; a longer carbon-sulphur bond in the complex implies a greater contribution from the z witterionic forms with more double-bond character for the carbon-nitrogen bonds. A very simple postulate is that the sulphur hybridisation is $s p^{2}$ in thiourea with an electron in a p_{z} orbital delocalised to participate in the π-bonding system of the molecule whereas in the complex, as in zinc blende, the sulphur atom is in $s p^{3}$ hybridisation. In the complex the angles round the carbon atom do not differ significantly from 120°, but they do differ significantly from those in thiourea for which $\mathrm{S}^{-} \mathrm{C}^{-} \mathrm{N}=122 \cdot 2^{\circ} \pm 0 \cdot 6^{\circ}$ and $\mathrm{N}^{-} \mathrm{C}-\mathrm{N}=$ $115 \cdot 6^{\circ} \pm 1 \cdot 1^{\circ}$. The significance of these changes will be discussed later in connection with work now in progress ${ }^{19}$ on thioacetamide and some of its co-ordination compounds.

It is a pleasure to thank Prof. E. G. Cox, F.R.S., for valuable advice, Dr. D. W. J. Cruickshank and Miss D. E. Pilling for carrying out the calculations on the Manchester University electronic computer, and Manchester University for making the computer available. Some of the cost was borne by a grant from the D.S.I.R., and some of the equipment used was on loan from the Royal Society and Imperial Chemical Industries Limited.

Department of Inorganic and Structural Chemistry, The University of Leeds.
[Received, March 21st, 1958.]
${ }^{18}$ Abrahams, Quart. Reviews, 1956, 10, 407.
${ }_{19}$ Truter, Acta Cryst., 1957, 10, 785.

[^0]: ${ }^{11}$ Dauben and Templeton, Acta Cryst., 1955, 8, 841.
 ${ }^{12}$ Cruickshank, ibid., 1956, 9, 747.

[^1]: ${ }^{13}$ Cruickshank and Robertson, Acta Cryst., 1953, 6, 698.
 ${ }^{14}$ Cox, Cruickshank, and Smith, Natuve, 1955, 175, 766.
 ${ }^{15}$ Cruickshank, Acta Cryst., 1956, 9, 754.

