701. The Crystal Structure of Dichlorobisthioureazinc.

By N. R. KUNCHUR and MARY R. TRUTER.

An X-ray crystal structure analysis of dichlorobisthioureazinc, $[(NH_2)_2CS]_2ZnCl_2$, has shown that the complex is molecular, each zinc atom being tetrahedrally co-ordinated to two chlorine and two sulphur atoms. Three-dimensional refinement, with allowance for anisotropic thermal motion, gave the bond lengths $Zn^-Cl = 2\cdot32 \pm 0\cdot01$ Å, $Zn^-S = 2\cdot35 \pm 0\cdot01$ Å, $S^-C = 1\cdot78 \pm 0\cdot02$ Å, $C^-N = 1\cdot28 \pm 0\cdot03$ Å. The thiourea group is planar with angles $S^-C^-N \ 121\cdot2^\circ \pm 1\cdot6^\circ$ and $116\cdot1^\circ \pm 1\cdot6^\circ$ and $N^-C^-N \ 122\cdot6^\circ \pm 2\cdot0^\circ$. The bond angle Zn^-S^-C is $108\cdot6^\circ \pm 0\cdot7^\circ$. The zinc valency angles deviate slightly but significantly from the tetrahedral, the angles being $Cl^-Zn^-Cl\ 107\cdot3^\circ$, $S^-Zn^-S\ 111\cdot5^\circ$, $S^-Zn^-Cl\ 109\cdot0^\circ$ and $110\cdot6^\circ$, all $\pm 0\cdot2^\circ$.

Most of the known complexes of zinc are tetrahedral, but there are exceptions, e.g., five-covalent dichloroterpyridylzinc.¹ Dichlorobisthioureazinc, $[(NH_2)_2CSl_2ZnCl_2, could be either a molecular compound or a salt, or, since the thiourea ligands might be linked through either the sulphur or the nitrogen atoms, it could be polynuclear. It is sparingly soluble in hot water and its aqueous solution does not give a precipitate with silver nitrate, so it is likely that the chlorine is covalently linked. Although both sulphur and nitrogen atoms form co-ordinate links with zinc, the majority of ligands containing both atoms are linked through the sulphur; hence the molecule is probably neutral with the zinc tetrahedrally bound to two chlorine and two sulphur atoms. This arrangement has, in fact, been proved by the structure analysis described below.$

¹ Corbridge and Cox, J., 1956, 594.

As the crystal structure of thiourea has recently been accurately re-determined ² the analysis of the structure of the zinc complex has been carried as far as possible to see if any conclusions could be drawn from changes in the molecular dimensions of thiourea on co-ordination.

EXPERIMENTAL

Crystals of dichlorobisthioureazinc were obtained by Maly's method: 3 hot saturated aqueous solutions of zinc chloride and thiourea were mixed, and cooled to give acicular crystals of the complex (Found: Zn, 22.9; Cl, 24.0; N, 20.4. Calc. for ZnS₂Cl₂C₂H₈N₄: Zn, 22.6; Cl, 24.8; N, 19.5%).

Accurate determination of the dimensions of the orthorhombic unit cell by Straumanis's method, Cu-K radiation being used, gave a = 13.065, b = 12.722, c = 5.890 Å, all +0.005 Å $(v = 978.92 \text{ Å}^3)$. The density calculated for 4 molecules (M, 288.6) per unit cell is 1.960 g./c.c., in satisfactory agreement with the value 1.965 g./c.c. obtained by flotation.

Reflections from the classes of planes (0kl) with k + l = 2n + 1 and (hk0) with h = 2n + 1were absent systematically. This is consistent with the space groups $Pnma - D_{2h}^{16}$ and $Pn2_1a - C_{2v}^9$. A piezoelectric test gave a negative result, and a centric distribution ⁴ was found for the intensities of the (hk0) planes, so that the space group was taken to be the centrosymmetrical Pnma.

For intensity measurements very small crystals (0.03 mm. in diameter) were photographed with Cu-K radiation, and no absorption correction was made (linear absorption coefficient, 127 cm.⁻¹). Equi-inclination Weissenberg photographs were taken about the principal axes for as many layers as possible, viz. up to (hk3), (7kl), and (h7l). Of the possible 739 reflections, 567 were observed. Intensities were estimated visually by comparison with a calibration slip, corrected for Lorentz and polarisation factors with the aid of a Cochran chart, and were correlated, and the resulting F^2 scaled by comparison with the absolute values of F^2 (*hk0*) determined by Wilson's method.⁵ The square roots were extracted to give $|F_{obs}|$ and during the isotropic refinement a more accurate scale factor was obtained by making $\sum |F_{obs}| = \sum |F_{cale}|$, allowing for multiplicity, and during anisotropic refinement the scale factor was one of the parameters.

[Nardelli, Cavalca, and Braibanti⁶ determined the unit-cell dimensions and space group, obtaining unit-cell dimensions not significantly different from ours, but a different space group because on their photographs there is a very weak reflection corresponding to (0,11,0) which violates the absences required for the n-glide but probably actually arises from double reflection by the pairs of planes $(\bar{2}40)$, (270) and (240), $(\bar{2}70)$.]

Three-dimensional Structure Analysis .- An approximate structure was obtained by twodimensional methods, the projections along [001] and [010] being solved by Patterson and Fourier syntheses and refined until R was less than 0.22, where $R = \sum |\langle |F_{obs}| = |F_{calc}| \rangle |/\sum |F_{obs}|$. The zinc and chlorine atoms lie in mirror planes at y = 1/4 and 3/4; the thiourea molecules are in general positions, related in pairs by the mirror planes. The structure is shown in the Figure; each zinc atom is surrounded approximately tetrahedrally by two chlorine and two sulphur atoms.

Three-dimensional refinement of co-ordinates was by differential syntheses with a backshift correction for finite series errors. Temperature factors were refined by changing the value of B in the exponential $-(B\sin^2\theta/\lambda^2)$ for each atom to make equal the curvatures of the electron-density distributions, $\partial^2 \rho / \partial x_i^2$, derived from the observed and calculated structure factors.

The first set of three-dimensional structure factors was calculated from the co-ordinates given by the two-dimensional analysis with scattering factors for carbon and nitrogen (McWeeny⁸), chlorine and zinc (Berghuis *et al.*⁹) and sulphur (International Tables¹⁰) all

- ² Kunchur and Truter, J., 1958, 2551. ³ Maly, Ber., 1876, **9**, 172.
- Howells, Phillips, and Rogers, Research, 1949, 2, 338.
- ⁵ Wilson, Acta Cryst., 1949, 2, 318.
- ⁶ Nardelli, Cavalca, and Braibanti, Gazzetta, 1956, 86, 1037.
- ⁷ Nardelli and Cavalca, personal communication.
- McWeeny, Acta Cryst., 1951, 4, 513.
- ⁹ Berghuis, Ijbertha, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, *ibid.*, 1955, 8, 478.
 - ¹⁰ "International Tables for the Determination of Crystal Structures," Borntraeger, Berlin, 1935.

with $B = 1.95 \text{ Å}^2$; these gave R = 0.30. It was found that the temperature factor was correct for zinc but low for all the other atoms. Five cycles of refinement were required to reduce R to 0.182 and the last differential synthesis gave no shifts as large as the standard deviations so that isotropic refinement was complete. However, examination of the ratios between the observed curvatures and those calculated on the assumption of isotropic thermal motion shows that even for the heavy atoms the motions are markedly anisotropic. In Table 1 are shown the values of B used for the last isotropic calculation of structure factors, the observed peak electron density, ρ , the ratio between this and the calculated value, and $r(x_i) = (\partial^2 \rho_0 / \partial x_i^2)/(\partial^2 \rho_c / \partial x_i^2)$.

~	
ADTE	
IADLE	т.

					0.94	
	Weig	hted mean	0.95	0.86	0.99	0.96
N ²	$3 \cdot 20$	7.6	0.90	0.75	1.03	0.87
N ¹	3.20	$8 \cdot 2$	0.89	0.78	0.91	0.90
С	2.50	8.0	1.00	0.96	0.99	1.02
C1 ²	2.50	$28 \cdot 8$	0.91	0.75	1.02	0.93
Cl ¹	2.50	31.1	0.96	0.94	0.90	0.98
S	2.60	29.6	0.96	0.87	1.03	0.88
Zn	$2 \cdot 10$	64·1	0.95	0.90	1.00	0.95
	B, Å ²	ρ, e/Å ³	Po/Pe	r(x)	r(y)	r(z)

The ratios correspond to values of $|F_{obs}|$ scaled to make $\sum |F_{obs}| = \sum |F_{calc}|$.

An interesting feature is the effect of anomalous dispersion on the temperature factor for zinc. From the atomic masses the ratio $B_{\rm Zn}$: $B_{\rm Cl}$ should be about 0.49: 1.0 while that found is 0.84: 1.0. Structure factors for the axial reflections were calculated with the correction for anomalous dispersion given by Dauben and Templeton ¹¹; a plot of log ([F_{corr}]/[F_{uncorr}]) against $\sin^2 \theta$ was linear and from the slope the value of the artificial temperature factor which allowed for anomalous dispersion was found to be B = 0.65 Å². The value B = 2.10 Å² empirically determined for zinc already includes this correction, B = 0.65 Å², so that the contribution due to the thermal vibration of zinc is B' = 1.45 Å². The $B'_{\rm Zn}$: $B_{\rm Cl}$ ratio is 0.58: 1.0, in better agreement with expectation.

Anisotropic Refinement.—Cruickshank's method ¹² for the successive refinement of anisotropic thermal parameters was used. The equations, which he gives, lead to the correct coefficients b_{ij} for each atom in the expression for the temperature factor $\exp - (b_{11}h^2 + b_{12}hk + b_{13}hl + b_{22}k^2 + b_{23}kl + b_{33}l^2)$. Co-ordinates were refined by differential synthesis as before. The scale factor was refined to make the peak electron densities derived from the observed and calculated structure factors equal; this at first was different from the factor required to make $\sum |F_{obs}| = \sum |F_{calc}|$ allowing for multiplicity, but when refinement was complete the two factors were the same. The first set of structure factors calculated with allowance for anisotropy gave R = 0.153; co-ordinate, and temperature factor shifts were applied to give new parameters (all $\times 10^5$), shown below, for which R = 0.148.

	x a	y/b	z/c	b_{11}	b12	b13	b_{22}	b23	b_{33}
Zn	0.16666	0.25000	0.31558	390	0	94	242	0	1598
S	0.09567	0.09791	0.15584	555	$\overline{2}\overline{6}\overline{2}$	587	269	134	1619
Cl ¹	0.34102	0.25000	0.25161	322	0	17	515	0	1588
Cl ²	0.14580	0.25000	$\bar{0}.\bar{2}\bar{9}\bar{4}\bar{2}\bar{8}$	776	0	812	245	0	1875
С	0.11794	0.00811	0.34335	365	67	$\bar{3}\bar{2}\bar{0}$	39 0	333	1210
N ¹	0.14287	0.00597	0·44571	757	340	275	555	$\overline{9}\overline{4}\overline{2}$	2612
N ²	0.10494	0·09871	0.26297	769	105	$1\bar{0}4\bar{6}$	324	573	3313

(This table gives the parameters actually used although not all the figures are significant.) A list of structure factors calculated from these parameters is given in Table 2 together with the observed structure factors.

Differential syntheses based on the structure factors in Table 2 indicated a maximum shift of 0.017 Å in y_0 and a corresponding standard deviation of 0.023 Å so that anisotropic refinement of co-ordinates was complete. The mean electron density ratio was 1.005, the mean curvature ratio 0.995, and the average deviation of the ratios from unity 1%; comparison with the values

¹¹ Dauben and Templeton, Acta Cryst., 1955, 8, 841.

¹² Cruickshank, *ibid.*, 1956, 9, 747.

in Table 1 shows the improvement effected by anisotropic refinement. From the small differences between the observed and calculated curvatures the final changes in the thermal parameters were calculated, the largest (in b_{13} for Cl²) being 1.2 times the corresponding standard deviation calculated from Cruickshank's formula.¹² Application of the shifts to the co-ordinates and temperature factors gave the final parameters which are shown in Table 3; the thermal parameters are quoted as the mean square amplitudes of vibration, U, where $U_{ii} = a_i^2 b_{ii}/2\pi^2$ and $U_{ij} = a_i a_j b_{ij}/4\pi^2$ ($i \neq j$), the *a*'s being unit-cell dimensions. Table 3 also shows the peak electron densities for the atoms; the standard deviation, σ (ρ), was 0.5 e/Å³. In Table 3 the estimated standard deviations ¹³ in the co-ordinates, σ (x_i), are given; for the thermal parameters, the values of $\sigma(U_{ij})$ derived from $\sigma(b_{ij})$ were found to be approximately the same for all *i* and *j* for each atom so that only a mean $\sigma(U)$ is quoted.

Correction for Rotational Oscillation.—It has been shown ¹⁴ that rotational oscillations can cause appreciable errors in apparent atomic positions, and for some molecules which can be assumed to be rigid the thermal motions can be analysed ¹⁵ to give the translational and

TABLE 2. Observed and calculated structure factors.

Reflections which are too weak to be observed have been omitted.

451	F (calc.)	F (obs.)	461	F (cole)	F (obs.)	цы	F (calc.)	F (obs.)	hbl	F·	F (obs.)	hkl	F (calc.)	F (obs.)	hkl	F (calc.)	F (obs.)
000 020	(576) - 92	76	10,0,0 10,1,0	-18 32	21 29	571 591	29 -24	31 31	292 2,10,2	24 - 39	24 44	103 113	9 -58	12 53	$13,2,3 \\ 13,3,3$	-19 31	17 28
040 060 080	$ \begin{array}{r} 168 \\ -198 \\ 173 \end{array} $	$138 \\ 169 \\ 154$	10,2,0 10,4,0 10,7,0	$ \begin{array}{r} 69 \\ -87 \\ -30 \end{array} $	$61 \\ 63 \\ 23$	5,11,1 5,12,1 5,13,1	$-13 \\ -11 \\ -17$	$ 19 \\ 17 \\ 23 $	2,11,2 2,12,2 2,13,2	-31 18 23	$\frac{27}{16}$ 24	$123 \\ 133 \\ 143$	57 116 86	$47 \\ 79 \\ 65$	024 044	$-49\\42$	$52 \\ 36$
0,12,0 0,14,0 0,16,0	$114 \\ -77 \\ 24$	99 64 21	10,8,0 10,10,0 10,12,0	$-37 \\ 59 \\ -17$	32 42 10	701 711	$-54 \\ 40$	46 47	2,14,2 2,15,2	$-13 \\ -21$	9 13	$153 \\ 173 \\ 183$	$-60 \\ 39 \\ 29$	$38 \\ 35 \\ 28$	204 214	$-24 \\ 43$	$19 \\ 56$
200 210	-53 - 129	$51 \\ 108$	12,0,0 12.1.0	57 7	$\frac{54}{16}$	741 751 761	$-26 \\ 23 \\ 10$	$31 \\ 31 \\ 10$	402 412 422	110 - 28 - 73	91 26 71	$193 \\ 1,10,3 \\ 1,11,3$	$-61 \\ -53 \\ 53$	64 60 60	$234 \\ 254 \\ 274$	$22 \\ 12 \\ -48$	$23 \\ 17 \\ 42$
$220 \\ 230 \\ 240$	$101 \\ 46 \\ -116$	$94 \\ 34 \\ 125$	12,2,0 12,3,0 12,4,0	$-54 \\ -12 \\ 26$	$\frac{41}{16}$	$771 \\ 781 \\ 7.12.1$	$-36 \\ -28 \\ -15$	38 34 7	432 442 452	40 36 30	49 35 31	303 313	-75	71 28	424 434	35 37	41 31
$250 \\ 260 \\ 270$	$-82 \\ -82 \\ 34 \\ 102$	94 33 87	12,6,0 12,7,0 12 8 0	-57 12 36	48 14 39	7,13,1	23 33	26 36	462 472 482	-87 20 51	89 16 63	323 333 343	87 70 	72 76 88	444 454	$-26 \\ -12$	$\frac{29}{12}$
280 290 2.10.0	$-46 \\ -32 \\ 59$	49 27 54	12,10,0 14.0.0	-23 -17	26 23	911 921 931	$ \begin{array}{r} 16 \\ -19 \\ 13 \end{array} $	24 22 18	492 4,10,2 4,11,2	$-26 \\ -22 \\ 24$	27 27 27 27	363 373 383	57 31 59	38 21 62	604 614 634	$^{49}_{-14}$ $^{-17}$	40 21 23
2,11,0 2,12,0 2,13,0	36 27 60	27 23 50	14,8,0 16.0.0	-2	5 17	961 971 981	$-32 \\ -16 \\ 14$	$\frac{37}{13}$	4,12,2 4,13,2 4 14 2	$ \begin{array}{r} 37 \\ -12 \\ -32 \end{array} $	41 31 28	393 3,10,3 3,11 3	-29 53 25	36 56 23	804 834	-6 -39	$\frac{16}{29}$
2,16,0	-27 -288	19 223	16,2,0 101	20	16 36	9,12,1 9,13,1	$15\\12$	19 10	602	-52	42	3,12,3 3,13,3 3,14,3	-36 25	38 26 26	854 10.04	10	12 30
410 420 430	45 25 97	38 24 86	111 131 141	31 74 86	35 83 91	11,0,1 11,1,1 11,21	$-17 \\ -18 \\ 16$	14 17 14	642 662	- 98 59	104 97 67	503	60 60	60	105 115	-27	21 51
440 450	-88 61	79 59	151 161	-30 -25	47 28	11,3,1 11,4,1	7 -7	7 10	682 6,10,2 6,12,2	-50 71 -32	64 73 36	$513 \\ 523 \\ 533 $	$-20 \\ -60$	26 65	$125 \\ 135 \\ 145$	30 - 50 - 32	37 48 29
470 480	-21 -100	23 100	191 1,10,1	-26 40 26	20 34 20	11,6,1 11,7,1	-10 -1 15	1 15 91	6,14,2 802	24 11	22 8	$543 \\ 553 \\ 563$	-22 53 -60	26 47 47	$155 \\ 175 \\ 195 $	-32 -44 -33 27	33 25 26
4,11,0 4,12,0	-45 -71	45 39	1,12,1 1,12,1 1,13,1	-25 -11 6	13 8	11,10,1	15 8	21 7	$ \begin{array}{r} 812 \\ 822 \\ 832 \end{array} $	$ \begin{array}{r} 17 \\ -15 \\ -28 \end{array} $	$13 \\ 23 \\ 31$	$573 \\ 583 \\ 593$	$-64 \\ 17 \\ 38$	$65 \\ 16 \\ 18$	305	54 40	49 51
600	43 73	42 69	1,16,1	-18	17	13,2,1 13,3,1 13,4,1	-20 -5	21 7	$ 842 \\ 852 \\ 862 $	15 18 8	18 19 9	703 713	57 64	54 63	335 345	-17 47	26 46
610 620 640	-150 181	$128 \\ 171 $	301 311 321	$-23 \\ -12 \\ -5$	89 32 15	002	-205	179	8,13,2	8 20	16 21	$723 \\ 743 \\ 753$	-32 20 -43	38 23 42	505	-15	40 23
650 660 670	-51 -18	52 21	331 341 371	50 84 27	107 24	022 042 062	-72 150	$124 \\ 64 \\ 124 \\ 05$	10,1,2 10,2,2 10,4,2	$-16 \\ -56 \\ 47$	21 50 46	763 773 783	-43 55 35	$\frac{1}{46}$ 46 26	535 555	-49 35 -40	35 33
680 6,10,0 6,12,0	-106 45	68 85 43	391 3,10,1	+47 +22 -20	42 21 21	0,10,2 0,12,2	$-90 \\ 44 \\ -61$	85 53 50	10,6,2 10,7,2 10,8,2	-28 14 25	35 8 29	903 012	-49	49	595	-30	28 28
6,14,0 810	-23 -23	16 17	3,11,1 3,12,1 3,13,1	-12 23 -16	10 25 23	0,14,2 202	55 33	46 29	10,10,2	-40	4 4	923 923	-14	45 16	705 715 725	- 33 27 23	$\frac{28}{26}$ 19
$ 820 \\ 830 \\ 850 $	52 74 39	47 63 30	501 511	34 43	$36 \\ 54$	$212 \\ 222 \\ 232$	$^{43}_{-69}_{-51}$	$45 \\ 62 \\ 51$	12,0,2 12,2,2 12,4,2	$-41 \\ -36 \\ -25$	40 29 25	963 11,1,3	32	32	735 905	-21 22	17 22
860 890 8,10,0	$^{23}_{-49}$	$30 \\ 39 \\ 22$	$521 \\ 531 \\ 541$	$ 18 \\ 31 \\ 26 $	17 36 27	$242 \\ 252 \\ 262$	59 36 35	58 38 43	12,6,2 12,8,2 12,10,2	$-{26 \atop 18}^{37}$	39 30 16	11,2,3 11,3,3 11,4,3	$-15 \\ -19 \\ 23$	$25 \\ 23 \\ 25$	925 11,3,5	-26 23	26 17
8,11,0 8,13,0	34 6	$\frac{22}{12}$	$551 \\ 561$	$-32 \\ 45$	$\frac{34}{34}$	$\tfrac{272}{282}$	$-45 \\ 29$	45 27	16,0,2	20	16	11,5,3 11,7,3	$-30 \\ -25$	$\frac{26}{31}$	006	39	45

¹³ Cruickshank and Robertson, Acta Cryst., 1953, 6, 698.

¹⁴ Cox, Cruickshank, and Smith, Nature, 1955, 175, 766.

¹⁵ Cruickshank, Acta Cryst., 1956, 9, 754.

Kunchur and Truter:

.

~

						T .	ABLE	3.	(Conti	nued	.)						
	F	F		F	F		F	F		F	F		F	F		F	F
hkl	(calc.)	(obs.)	hkl	(calc.)	(obs.)	hkl	(calc.)	(obs.)	hkl	(calc.)	(obs.)	hkl	(calc.)	(obs.)	hkl	(calc.)	(obs.)
216	- 53	63	401	-57	59	10.6.1	30	24	392	-31	37	033	-63	48	344	-25	24
256	- 33	38	411	45	54	10.8.1	21	20	3 10 2	-26	34	053	30	17	354	27	22
276	51	41	421	-42	48	10.91	27	34	3 11.2	23	28	000	••••	~ '	364	-37	38
			431	-18	19	10 10 1	-16	20	3 12 2	- 14	16	213	- 22	19	001		00
406	- 22	26	441	52	54	±0,±0,±		20	3 14 2	- 11	94	223	A	43	504	46	43
416	18	17	451	28	34	19.0.1	-48	40	3 15 9	12	12	922	11	14	514	40	40
436	-45	â 1	461	12	91	19 1 1		41	5,10,2		10	049	90	04	544	40	40
456	26	30	471	- 13	41	19 9 1	20	20	509	20	95	952	15	01	554	00	10
100	20	90	A 10 1	-40	21	19 5 1	- 40	36	519	- 34	20	600	-10	21	574	- 20	20
696	- 19	14	4 11 1	14	17	19 6 1	- 40	07	500	94	45	203	91	21	074	40	28
020	-15	1.1	4,11,1	19	20	1971	45	21	529	54 60	40	40.9	10	14	704	47	45
826	40	00	4,10,1	10	20	1001	10	34	034	29	30	400	12	14	704	-4/	40
000	42	20	601	10	0.0	12,0,1	-18	11	042	-20	29	423	-23	28	714	-15	21
10.0.0	17	10	001	10	22	12,9,1	-28	28	552	30	40	433	36	38	724	34	32
10,0,6	17	10	011	- 64	03	12,10,1		!	562	29	31	403	14	19	734	- 12	11
107	40	10	621	104	57	12,11,1	15	14	572	- 59	59	463	-18	19	764	47	41
107	32	10	631	105	110				582	-23	33						
117	-19	19	641	-44	36	14,0,1	-12	10				613	40	42	904	-14	16
			651	69	56	14,1,1	16	10	702	67	51	623	-22	27	914	35	37
307	-18	16	671	30	28	14,3,1	-10	10	712	22	22	633	-17	26	924	-23	29
			691	-60	34	14,4,1	11	7	722	-37	43	653	26	31			
527	-4	12	6,10,1	4 0	24	14,5,1	15	7	762	 6 8	69	663	-19	24	11,0,4	17	16
			6,11,1	45	34	14,6,1	16	7	772	-26	29	673	-32	31	11,2,4	-20	29
011	-125	106	6,13,1	-13	16	14,7,1	-15	7	782	24	32				11, 3, 4	35	32
031	62	69	6,15,1	19	17				7,12,2	25	23	813	-19	22			
051	-75	76				16,0,1	19	10	7,14,2	-27	21	823	28	32	035	40	40
071	96	89	801	60	64	16.1.1	22	21	• •			843	-12	17			
091	-25	30	811	46	51				902	13	17	863	24	20	205	87	77
0.11.1	30	24	821	46	33	102	0	13	912	-47	38	873	20	17	235	17	18
0.13.1	-42	36	831	-34	34	112	-23	28	922	14	9				245	36	29
0.15.1	19	19	841	- 31	34	122	- 51	48	942	-29	38	10.1.3	-22	24	265	- 39	28
•,,			851	34	36	132	-80	70	952	- 36	36	1073	19	20			
201	-115	96	861	-29	38	142	64	64	962	-10	ğ	×0,1,0			405	-17	18
211	46	48	871	- 32	38	172	24	29	972	38	46	1213	20	25	Å 15	-16	17
221	-72	96	881	11	13	182	21	34	9102	21	24	12 2 3	-18	17	425	37	37
231	- 67	89	891	31	40	192	33	38	0,10,2	~ ~ ~	21	12,3,3	-18	24	435	- 34	31
241	79	96	8 10 1	34	ริตั	1 10 2	- 42	44	11 0 2	- 91	90	12,0,0	-10		445		45
251	45	48	8 11 1	-13	10	1 11 2	- 26	28	11 9 9	- 21	20	104	_ 22	30	110	-40	40
261	54	10	8 19 1	11	12	1 1 2 9	- 20	26	11 2 2	49	20	114	- 33	10	605	. 97	96
971	. 00	99	9 1 2 1	20	01	1 15 9	19	10	11,0,2	17	01	194		01 01	605	- 27	10
981	- 19	10	8 14 1	10	10	1,10,2	-12	10	11,0,2	22	21	124	20	50	020	- 14	10
201	- 10	91	0,14,1	-10	10	209	00	01	11,0,2	00	00	104	44	50	035	30	20
291	50	40	10.01	97	01	302 910	- 62	04	11,9,2	20	28	144	- 28	17	005	20	00
2,10,1	- 51	40	10,0,1	10	14	012	- 32	24	11,11,2	-19	10	194	-10	17	829	- 30	29
4,11,1	-21	24	10,1,1	10	14	332	98 49	02	19.0.0	07		0.04		0.0	839	13	11
2,12,1	-20	23	10,2,1	- 32	30	342	43	00	13,2,2	- 25	24	304	26	32	845	44	42
2,13,1	19	13	10,3,1	-43	34	352	-30	31	13,4,2	32	34	314	31	27			
2,14,1	18	19	10,4,1	13	14	362	53	60		• •		324	-12	16	10,2,5	25	25
2,15,1	-11	15	10,5,1	21	24	872	24	28	013	18	19	334	-56	31			
2,16,1	18	17															

TABLE 3. Final parameters and estimated standard deviations.

				X	Y	Ζ	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
	x z	y/b	z/c	(Å)	(Å)	(Å)	(10 ^{`s} Å)	(10 ^š Å)	(10 ³ Å)
Zn	0.1668	0.2500	0.3154	2.179	3.181	1.858	2		2
S	0.0959	0.0978	0.1560	1.253	1.244	0.919	5	5	5
Cl ¹	0.3409	0.2500	0.2519	4.454	3.181	1.484	4		4
Cl	0.1458	0.2500	-0.2946	1.905	3 ·181	4.155	6		4
с	0.1177	-0.0092	0.3447	1.537	-0.150	2.030	15	23	19
N ¹	0.1431	0.0062	0.5551	1.870	0.079	3.269	20	18	17
N ²	0.1043	-0.0995	0.2638	1.363	-1.265	1.554	20	15	22
			T 7				,	T T \	
	U_{11}	U_{12}	U 13	U 22	U 28	U 33	σ(U_{j}	P
	$(10^{3}A^{3})$	(10^3 A^2)	(10 ³ A ²)	$(10^3 A^2)$	$(10^3 A^2)$	$(10^3 A^2)$	(10^{3})	A^2)	(e/A ³)
Zn	34	0	3	20	0	28		2	65.6
S	49	-26	-26	21	5	28		4	3 0·6
Cl ¹	27	0	0	43	0	28		4	$32 \cdot 2$
Cl ²	73	0	26	17	0	33		4	30 ·0
С	33	3	-11	31	-7	22	1	7	8.9
N ¹	66	-33	-23	43	-36	47	1	9	8.9
379								<u>^</u>	~ ^

rotational vibrations. A rigorous analysis for this complex is not possible because it is unlikely to be rigid and the standard deviations in the mean square amplitudes of oscillation are very large for the light atoms; it is, however, of interest to find an approximate value for the *maximum* correction for rotational oscillation. The procedure used was the same as that described for the ethyl sulphate anion ¹⁶ so that only the outline is given here. Cruickshank ¹⁷

¹⁶ Truter, Acta Cryst., 1958, in the press.
¹⁷ Cruickshank, *ibid.*, 1956, 9, 757.

has shown that the approximate correction, M, to the length OP from the mass centre O to an atom P is $M = (U_a + U_b)/20P$ where U_a and U_b are the mean square amplitudes of oscillation about two axes through O orthogonal to OP. The zinc atom is only 0.2 Å from the mass centre of the molecule so that the motion of this atom may be taken as approximately the translational motion of the molecule as a whole. Subtraction of the thermal parameters for zinc (allowing for an apparent mean square amplitude of $8 imes 10^{-3}$ Å² due to anomalous dispersion) gave mean square amplitudes, $U-U_{\rm Zn}$, for the other atoms, which for the purpose of finding the maximum correction were taken as entirely due to rotational oscillation. The maximum, minimum, and intermediate values of the "oscillation" mean square amplitudes and their directions were calculated for each atom; the magnitudes are:

	S	Cl1	C1 ²	С	N^1	N^2
$U_{\rm max}$ (10 ³ Å ²)	37	32	65	20	5 3	67
$U_{\rm min.}$ (10 ³ Å ²)	0	1	5	5	0	8
$U_{\text{inter.}}(10^3 \text{ Å}^2)$	4	8	9	11	45	21

 U_a was taken to be $U_{\text{max.}}$. For those atoms, Cl and S, for which $U_{\text{max.}}$ was approximately perpendicular to OP, U_b was taken to be the value of U in the third orthogonal direction, and a reliable correction was obtained. For the light atoms U_b was taken to be $U_{\text{inter.}}$; this procedure may overestimate M and probably underestimates the correction to the C-N bond length because it is likely that the nitrogen atoms rotate about the C-S bond axis, as in thiourea itself, as well as about the mass centre of the molecule. Corrected co-ordinates were obtained by increasing the distance of each atom from the mass centre by M along OP.

Interatomic Distances and Angles.-The bond lengths, with and without corrections for rotational oscillation, and their estimated standard deviations (e.s.d.) are shown in Table 4; as can be seen from the values of $\sigma(U)$ in Table 3, even if the procedure were rigorous some uncertainty in the corrections would be introduced by the inaccuracies in the thermal parameters so that for the final values the limits of error have been increased to allow for these deficiencies. Only one set of bond angles is given because they were not altered by the corrections. Some of the intramolecular non-bonded distances are also given in Table 4. In the Figure the intramolecular separations between nearest neighbours are shown. The thiourea group is planar to within ± 0.01 Å as in thiourea.²

TABLE 4	4. I1	iteratomic	distances	and	angles.

Bond	uncorr.	corr.	e.s.d.	final				Dista	nce
lengths	Å	Å	Å	Å	Bond a	ngles	e.s.d.	Å	
Zn–S	2.343	2.352	0.005	$2\cdot35\pm0\cdot01$	S-Zn-S'	111.5°	0.2	SN^1	2.69
Zn-Cl ¹	$2 \cdot 305$	2.314	0.005	2.31	S-Zn-Cl ¹	109.0	0.2	SN^2	2.59
Zn-Cl ²	2.313	2.328	0.005	$2.32^{2.32} \pm 0.01$	S-Zn-Cl ²	110.6	0.2	$N^{1}N^{2}$	$2 \cdot 24$
S-C	1.78	1.78	0.022	1.78 ± 0.02	Cl1-Zn-Cl3	107.3	0.2	SS'	3.87
C-N ¹	1.30	1.30	0.027	1.30	Zn-S-C	108.6	0.7	Cl1.Cl2	3 ⋅69
C-N ²	1.25	1.26	0.028	1.26 $f^{1.28} \pm 0.03$	S-C-N1	121.2	1.5	ZnC	3.36
					S-C-N ²	116.1	1.5	N ¹ .Cl ²	3.23
					N ¹ -C-N ²	122.6	1.9		

It is noteworthy that even for bonds between heavy atoms the systematic error due to rotational oscillations may be twice the estimated standard deviation calculated to allow for random errors.

DISCUSSION

The structure as a whole is shown in the Figure. The packing is very efficient and there are many separations of about 3.5-4.0 Å but no unreasonably short ones and none that can be attributed to hydrogen bonding.

The significant departure of the bond angles around the zinc atom from those of a regular tetrahedron may indicate that the bonds are not formed from simple sp^3 hybrid orbitals but include some contribution from the d orbitals, or it may give rise to more efficient packing of the molecules in the solid. The Zn-S bond is not significantly longer than that in zinc blende but the Zn-Cl bond, which is the same as that $(2\cdot 29 \pm 0.02 \text{ Å})$ found in dichloroterpyridylzinc,¹ is significantly shorter than the sum of the ionic radii (2.66 Å) as given by the separation in zinc chloride. Probably all the bonds to the zinc atom are partly ionic and partly covalent.

The S-C bond does not differ significantly from the value generally accepted for a single bond, 1.82 Å. A large variation in the bond angles for sulphur bonded to two other atoms has been observed ¹⁸ ranging from 65.8° to 119.0° ; the angle found in the complex, 108.6° is approximately tetrahedral.

Comparison with unco-ordinated thiourea ² shows that the molecule has retained its planarity, *i.e.*, that the carbon atom is in a state of sp^2 hybridisation. The C-S bond is lengthened and the C-N bonds are shortened. The change in the C-S bond is just significant; the bond in thiourea is 1.71 ± 0.01 Å, so that the probability that the increase of 0.07 Å has occurred as a result of random errors of observation is 1 in 100. The very large standard deviations in the C-N bond lengths mean that the difference between

Projection along [001]. The heights of the molecules along the c axis are shown as fractional co-ordinates in parentheses. The numbers are distances in Å between nitrogen atoms and their nearest neighbours as indicated by the dotted lines.

 1.28 ± 0.03 Å in the complex and 1.33 ± 0.01 Å in the molecule is not statistically significant. Qualitatively the changes appear reasonable; in thiourea three forms, two zwitterionic $[NH_2 \cdot NH_2^+:C\cdot S^-]$ and one uncharged $[(NH_2)_2C\cdot S]$, contribute to the bonding; a longer carbon-sulphur bond in the complex implies a greater contribution from the zwitterionic forms with more double-bond character for the carbon-nitrogen bonds. A very simple postulate is that the sulphur hybridisation is sp^2 in thiourea with an electron in a p_z orbital delocalised to participate in the π -bonding system of the molecule whereas in the complex, as in zinc blende, the sulphur atom is in sp^3 hybridisation. In the complex the angles round the carbon atom do not differ significantly from 120°, but they do differ significantly from those in thiourea for which S⁻C⁻N = 122\cdot2° \pm 0.6° and N⁻C⁻N = 115\cdot6° \pm 1\cdot1°. The significance of these changes will be discussed later in connection with work now in progress ¹⁹ on thioacetamide and some of its co-ordination compounds.

It is a pleasure to thank Prof. E. G. Cox, F.R.S., for valuable advice, Dr. D. W. J. Cruickshank and Miss D. E. Pilling for carrying out the calculations on the Manchester University electronic computer, and Manchester University for making the computer available. Some of the cost was borne by a grant from the D.S.I.R., and some of the equipment used was on loan from the Royal Society and Imperial Chemical Industries Limited.

DEPARTMENT OF INORGANIC AND STRUCTURAL CHEMISTRY, THE UNIVERSITY OF LEEDS.

[Received, March 21st, 1958.]

¹⁸ Abrahams, Quart. Reviews, 1956, 10, 407.

¹⁹ Truter, Acta Cryst., 1957, 10, 785.